Waste to Energy: An Overview

Dr. Sudhir Kumar

Chief Executive
Green Energy Solutions, Pune

Mob: +91 96650 20206 drsk22@gmail.com

The Waste Materials You See Around

Organic (C,H,O,N)

- Animal and human excreta
- Agricultural residue
- Trees, Shrubs, grass
- Urban sewage
- Municipal solid waste
- Industrial organic waste
- Industrial liquid waste

(Can be Burnt or Digested to produce energy)

Inorganic (Fe,Pb,Si,Al,Cu)

- Building materials
- Waste glass materials
- Metal scrap materials
- Electronic waste
- Inorganic industrial solid waste
- Inorganic industrial liquid waste
- Road construction items

(Can't be Burnt/Digested to produce energy)

Animal and Human Excreta

- 4 cows or buffaloes ⇒ 50 kg dung/day ⇒ Biogas plant ⇒ 2 cu.m. biogas/day ⇒ Sufficient for a family of 5 persons
- Community toilet ⇒ 70 persons per day ⇒ 40 kg excreta/day ⇒ Biogas plant ⇒ 2 cu.m. biogas/day ⇒ Sufficient for a family of 5 persons

Agro-Industrial Organic Solid Waste

- Types of Waste:
 - Sugar mill bagasse
 - Large saw mill waste wood materials
 - Paper and pulp mill dried solid waste
 - Food industry seed, peels, filter press
 - Agricultural residues surplus only
- Technology: Combustion/Cogeneration
 - Fuel processing Sizing, drying, transporting
 - Burn in boiler High pressure steam 60, 100 bar
 - Steam Passed through turbine -Electricity generation
 - Electricity control/supply Step up transformer
 - Bagasse Cogen Process steam + Electricity
 - Biomass requirement 30-35 tons per MW per day

Urban Sewage Waste

- Sewage Treatment Plant (STP): The Municipal Liquid Waste generated largely due to bathing, washing and sanitary activities collected through open or underground drainage systems to a central place.
- Only few cities have STP. Most of them release the waste without treatment to open fields or river, hence pollution and health hazard.
- In typical Indian city, 110 liters per person per day on an average.
 Thus a city of population 1 lakh will produce 11 million liters per day (MLD) of liquid waste.
- The average COD is just 750 ppm (mg/liter). A 30 MLD STP can produce power only up to 0.75 MW.
- Hence STP based power projects are not commercially viable.
 However, power generation helps recovering some of cost of pollution control process.

Industrial Liquid Waste

Distillery waste water (spent wash) 1 MLD ⇒ Contains COD 1 lakh ppm (mg/liter) ⇒ 100 g COD per liter of waste water ⇒ Total COD 1 lakh kg in 1 MLD of waste water ⇒ UASB industrial biogas plant ⇒ 80% COD removal efficiency ⇒ Total COD removed 80,000 kg ⇒ 0.5 cu.m. biogas per kg of COD removed ⇒ Total biogas 40,000 cu.m. ⇒ Biogas engine produces 2 kWh (units) electricity per cu.m. Total units generated 80,000 units per day

⇒ Equivalent to 3 MW power project

NOTE: 30 MLD Sewage ⇒ 0.75 MW While 1 MLD distillery waste ⇒ 3 MW

General Perception:

Waste means MSW

Let us delve into this in detail

Suggested Reading

Search on google

- Brain teasers and easers on waste, Sudhir Kumar
 4 pages
 - <u>Technology options for MSW, Sudhir Kumar</u>
 11 pages

Salient Features of MSW

- Only organic matters (OM) useful to generate energy
- Indian Cities: OM 40% to 60%
- Developed Countries: OM 70% to 80%
- Maharashtra: Solapur highest OM "Bidi" industries, "Tendu" leaves reject
- In India:
 - Collection efficiency only 60% to 70%,
 - Mostly unscientific dumping
 - Average MSW 0.5 kg per person per day
 - City with population 1 lakh produces 50 tons per day (TPD)
 - Estimate: Mumbai (6000 TPD), Pune (3000 TPD), Kalyan (800 TPD), Solapur (400 TPD) and Aurangabad (300 TPD)
- MSW 100 TPD can produce minimum 1 MW
- Some technologies claim more power per ton

Technology Options: WTE

- Sanitary landfill
- Incineration
- Gasification
- Anaerobic digestion
- Other types

Sanitary landfill

- MSW Scientific dumping
 - 60 cm compacted solid liner
 - flexible HDPE
 - geo-membrane liner
 - geo-textile liner,
 - 30 cm drainage material layer
 - 60 cm protective layer
- Landfill gas 50% CH₄
- Utilized for:
 - Heating
 - Power in IC engines
 - Gas and steam turbines
- Better than normal dumping
- High cost

Incineration

- Controlled combustion steam - steam turbines -Power
- Higher efficiency i.e. 550– 600 kWh/ton
- About 75% of weight reduction and 90% of volume reduction
- Complete burning even biologically hazardous waste
- Air pollution Dust, CO2, SO2, NOx, Dioxin and furan (Carcinogenic)
- If pollution control system -30% additional cost financially unattractive

Gasification

- Pyrolysis under limited air at high temperature
- Generate CO, CH₄, hydrogen, nitrogen
- Combustible gas calorific value 1000-1200 kcal/m³
- Used in IC engines or boilers – steam - power
- Advantages:
 - Gasification to thermal efficiency is higher
 - Weight reduction of 75% and volume reduction of 90%
 - Better pollution control
 - Less area required

Anaerobic Digestion

- Mechanical segregation to obtain putrescible fraction,
- Hydrolysis tanks break into smaller molecules
- Fed into anaerobic digestion tanks
- Produces combustible gas
 CH₄ (60%), and inert gas,
 CO₂
- CH₄ gas used to produce power through a biogas electric generator
- Remaining digestate (slurry)
 is a soil conditioner free from
 pathogens
- Advantages:
 - Less land required
 - No release of greenhouse gases
 - No problem of odor
 - Cost effective

Other Types

Pelletization

- Producing fuel pellets from solid waste
- Raw garbage (1000 kcal/kg), Pellets 4000 Kcal/kg
- 15-20 tons pellets from 100 tons
- Pellets Burn in boilers Steam Turbine Power

Flash pyrolysis

- Low temperature pyrolysis fuel oil
- Hammer mill reduce particle size 3 mm
- Reactor 500 deg. C atm. pressure thick oil

Pyro-plasma process

- Two electrodes close distance ionized gas passed
- High voltage discharge between the electrodes
- High temperature 5600-30000 °F created
- Biomass turns into ionized gas
- Ionized gas quenched and cooled
- Most efficient
- Very high cost

Cost and Incentives

Cost Estimated (Per 100 TPD):

- Incineration: Rs. 12-15 Cr
- Biomethanation: Rs. 10-12 Cr
- Gasification: Rs. 8-10 Cr
- Pyro plama: Rs. 25-30 Cr

Financial incentives:

 Rs.20 - 60 lakhs per MW depending upon technology and user category (Govt., Cooperative, Private)

Fiscal incentives

- 80% accelerated depreciation
- Ten years tax holiday
- Concessional customs duty
- Excise duty exemption
- General Sales tax (GST) exemption(only in certain states)

Achievement (As on 30 June 2015)

- Source : MNRE Website
- Grid Connected
 - Bio-Power (Biomass incineration,
 Gasification and Bagasse Cogeneration):
 4418 MW
 - Waste to Power: 127 MW
- Off grid:
 - Waste to Energy: 146 MWeq
 - Biomass(non-bagasse) Cogen: 602 MWeq
 - Biomass Gasifiers: 18 MWeq

THANK YOU

Dr. Sudhir Kumar, Chief Executive, Green Energy Solutions,

8/15, Mazda Deluxe Homes, Porwal Park, Tank Road,

Off: Alandi Road, Yerwada, Pune - 411006, India.

Cell No. +91-9665020206, E-mail: drsk22@gmail.com